r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)"
from : https://emailregex.com/
Thursday, 16 January 2020
How to filter Pandas dataframe using 'in' and 'not in' like in SQL
You can use
pd.Series.isin
.
For "IN" use:
something.isin(somewhere)
Or for "NOT IN":
~something.isin(somewhere)
As a worked example:
>>> df
countries
0 US
1 UK
2 Germany
3 China
>>> countries
['UK', 'China']
>>> df.countries.isin(countries)
0 False
1 True
2 False
3 True
Name: countries, dtype: bool
>>> df[df.countries.isin(countries)]
countries
1 UK
3 China
>>> df[~df.countries.isin(countries)]
countries
0 US
2 Germany
from : https://stackoverflow.com/questions/19960077/how-to-filter-pandas-dataframe-using-in-and-not-in-like-in-sql
Friday, 10 January 2020
Converting Dictionary to List
dict.items()
Does the trick.
from : https://stackoverflow.com/questions/1679384/converting-dictionary-to-list
Transform a Counter object into a Pandas DataFrame
You can construct using
from_dict
and pass param orient='index'
, then call reset_index
so you get a 2 column df:In [40]:
from collections import Counter
d = Counter({'fb_view_listing': 76, 'fb_homescreen': 63, 'rt_view_listing': 50, 'rt_home_start_app': 46, 'fb_view_wishlist': 39, 'fb_view_product': 37, 'fb_search': 29, 'rt_view_product': 23, 'fb_view_cart': 22, 'rt_search': 12, 'rt_view_cart': 12, 'add_to_cart': 2, 'create_campaign': 1, 'fb_connect': 1, 'sale': 1, 'guest_sale': 1, 'remove_from_cart': 1, 'rt_transaction_confirmation': 1, 'login': 1})
df = pd.DataFrame.from_dict(d, orient='index').reset_index()
df
Out[40]:
index 0
0 login 1
1 rt_transaction_confirmation 1
2 fb_view_cart 22
3 fb_connect 1
4 rt_view_product 23
5 fb_search 29
6 sale 1
7 fb_view_listing 76
8 add_to_cart 2
9 rt_view_cart 12
10 fb_homescreen 63
11 fb_view_product 37
12 rt_home_start_app 46
13 fb_view_wishlist 39
14 create_campaign 1
15 rt_search 12
16 guest_sale 1
17 remove_from_cart 1
18 rt_view_listing 50
You can rename the columns to something more meaningful:
In [43]:
df = df.rename(columns={'index':'event', 0:'count'})
df
Out[43]:
event count
0 login 1
1 rt_transaction_confirmation 1
2 fb_view_cart 22
3 fb_connect 1
4 rt_view_product 23
5 fb_search 29
6 sale 1
7 fb_view_listing 76
8 add_to_cart 2
9 rt_view_cart 12
10 fb_homescreen 63
11 fb_view_product 37
12 rt_home_start_app 46
13 fb_view_wishlist 39
14 create_campaign 1
15 rt_search 12
16 guest_sale 1
17 remove_from_cart 1
18 rt_view_listing 50
from : https://stackoverflow.com/questions/31111032/transform-a-counter-object-into-a-pandas-dataframe
Subscribe to:
Posts (Atom)