Thursday, 16 January 2020

General Email Regex

r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)"

from : https://emailregex.com/

How to filter Pandas dataframe using 'in' and 'not in' like in SQL

You can use pd.Series.isin.
For "IN" use: something.isin(somewhere)
Or for "NOT IN": ~something.isin(somewhere)
As a worked example:
>>> df
  countries
0        US
1        UK
2   Germany
3     China
>>> countries
['UK', 'China']
>>> df.countries.isin(countries)
0    False
1     True
2    False
3     True
Name: countries, dtype: bool
>>> df[df.countries.isin(countries)]
  countries
1        UK
3     China
>>> df[~df.countries.isin(countries)]
  countries
0        US
2   Germany

from : https://stackoverflow.com/questions/19960077/how-to-filter-pandas-dataframe-using-in-and-not-in-like-in-sql

Friday, 10 January 2020

Converting Dictionary to List

dict.items()
Does the trick.

from : https://stackoverflow.com/questions/1679384/converting-dictionary-to-list

Transform a Counter object into a Pandas DataFrame

You can construct using from_dict and pass param orient='index', then call reset_index so you get a 2 column df:
In [40]:
from collections import Counter
d = Counter({'fb_view_listing': 76, 'fb_homescreen': 63, 'rt_view_listing': 50, 'rt_home_start_app': 46, 'fb_view_wishlist': 39, 'fb_view_product': 37, 'fb_search': 29, 'rt_view_product': 23, 'fb_view_cart': 22, 'rt_search': 12, 'rt_view_cart': 12, 'add_to_cart': 2, 'create_campaign': 1, 'fb_connect': 1, 'sale': 1, 'guest_sale': 1, 'remove_from_cart': 1, 'rt_transaction_confirmation': 1, 'login': 1})
df = pd.DataFrame.from_dict(d, orient='index').reset_index()
df

Out[40]:
                          index   0
0                         login   1
1   rt_transaction_confirmation   1
2                  fb_view_cart  22
3                    fb_connect   1
4               rt_view_product  23
5                     fb_search  29
6                          sale   1
7               fb_view_listing  76
8                   add_to_cart   2
9                  rt_view_cart  12
10                fb_homescreen  63
11              fb_view_product  37
12            rt_home_start_app  46
13             fb_view_wishlist  39
14              create_campaign   1
15                    rt_search  12
16                   guest_sale   1
17             remove_from_cart   1
18              rt_view_listing  50
You can rename the columns to something more meaningful:
In [43]:
df = df.rename(columns={'index':'event', 0:'count'})
df

Out[43]:
                          event  count
0                         login      1
1   rt_transaction_confirmation      1
2                  fb_view_cart     22
3                    fb_connect      1
4               rt_view_product     23
5                     fb_search     29
6                          sale      1
7               fb_view_listing     76
8                   add_to_cart      2
9                  rt_view_cart     12
10                fb_homescreen     63
11              fb_view_product     37
12            rt_home_start_app     46
13             fb_view_wishlist     39
14              create_campaign      1
15                    rt_search     12
16                   guest_sale      1
17             remove_from_cart      1
18              rt_view_listing     50

from : https://stackoverflow.com/questions/31111032/transform-a-counter-object-into-a-pandas-dataframe