Name- or Label-Based (using regular expression syntax)
df.filter(regex='[A-CEG-I]') # does NOT depend on the column order
Location-Based (depends on column order)
df[ list(df.loc[:,'A':'C']) + ['E'] + list(df.loc[:,'G':'I']) ]
Note that unlike the label-based method, this only works if your columns are alphabetically sorted. This is not necessarily a problem, however. For example, if your columns go
['A','C','B']
, then you could replace 'A':'C'
above with 'A':'B'
.The Long Way
And for completeness, you always have the option shown by @Magdalena of simply listing each column individually, although it could be much more verbose as the number of columns increases:
df[['A','B','C','E','G','H','I']] # does NOT depend on the column order
Results for any of the above methods
A B C E G H I
0 -0.814688 -1.060864 -0.008088 2.697203 -0.763874 1.793213 -0.019520
1 0.549824 0.269340 0.405570 -0.406695 -0.536304 -1.231051 0.058018
2 0.879230 -0.666814 1.305835 0.167621 -1.100355 0.391133 0.317467
from : https://stackoverflow.com/questions/29241836/select-multiple-columns-by-labels-pandas
No comments:
Post a Comment